Understanding Guyton's venous return curves.

نویسندگان

  • Daniel A Beard
  • Eric O Feigl
چکیده

Based on observations that as cardiac output (as determined by an artificial pump) was experimentally increased the right atrial pressure decreased, Arthur Guyton and coworkers proposed an interpretation that right atrial pressure represents a back pressure restricting venous return (equal to cardiac output in steady state). The idea that right atrial pressure is a back pressure limiting cardiac output and the associated idea that "venous recoil" does work to produce flow have confused physiologists and clinicians for decades because Guyton's interpretation interchanges independent and dependent variables. Here Guyton's model and data are reanalyzed to clarify the role of arterial and right atrial pressures and cardiac output and to clearly delineate that cardiac output is the independent (causal) variable in the experiments. Guyton's original mathematical model is used with his data to show that a simultaneous increase in arterial pressure and decrease in right atrial pressure with increasing cardiac output is due to a blood volume shift into the systemic arterial circulation from the systemic venous circulation. This is because Guyton's model assumes a constant blood volume in the systemic circulation. The increase in right atrial pressure observed when cardiac output decreases in a closed circulation with constant resistance and capacitance is due to the redistribution of blood volume and not because right atrial pressure limits venous return. Because Guyton's venous return curves have generated much confusion and little clarity, we suggest that the concept and previous interpretations of venous return be removed from educational materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A computational model-based validation of Guyton's analysis of cardiac output and venous return curves.

Guyton developed a popular approach for understanding the factors responsible for cardiac output (CO) regulation in which 1) the heart-lung unit and systemic circulation are independently characterized via CO and venous return (VR) curves, and 2) average CO and right atrial pressure (RAP) of the intact circulation are predicted by graphically intersecting the curves. However, this approach is v...

متن کامل

Clinical review: Guyton - the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output

Arthur Guyton's concepts of the determinative role of right heart filling in cardiac output continue to be controversial. This paper reviews his seminal experiments in detail and clarifies the often confusing concepts underpinning his model. One primary criticism of Guyton's model is that the parameters describing venous return had not been measured in a functioning cardiovascular system in hum...

متن کامل

State-space representation of extended Guyton's model

E-mail: [email protected], Tel: (81)-6-6833-5012; Fax: (81)-6-6835-5403; 9 10 11 12 The work of Moller PW et al. (9), recently published in the American Journal of 13 Physiology-Heart and Circulatory Physiology, has reported that Guyton’s circulatory 14 equilibrium model qualitatively predicts the dynamic response from changing right 15 atrial pressure (RAP) and that RAP acts as back-pressure t...

متن کامل

Importance of atrial compliance in cardiac performance.

Effects of changes in atrial compliance on cardiac performance were analyzed using a circulatory analog model. The atrium was assumed to be a noncontracting chamber with a constant compliance. It connected the venous return system, which was represented by mean circulatory filling pressure and a venous return resistance in accordance with Guyton's concept, with the ventricle, which was characte...

متن کامل

A novel framework of circulatory equilibrium.

A novel framework of circulatory equilibrium was developed by extending Guyton's original concept. In this framework, venous return (CO(V)) for a given stressed volume (V) was characterized by a flat surface as a function of right atrial pressure (P(RA)) and left atrial pressure (P(LA)) as follows: CO(V) = V/W - G(S)P(RA) - G(P)P(LA), where W, G(S), and G(P) denote linear parameters. In seven d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 301 3  شماره 

صفحات  -

تاریخ انتشار 2011